The swap
function in the ParaSwapUtils
library does not include a check to ensure that the fromToken
address is not the zero address (address(0)
). This could lead to unexpected behavior or transaction failures when interacting with the function.
Deploy the ParaSwapUtils
library.
Craft malicious callData
where fromToken
is set to address(0)
.
Call the swap
function with the malicious callData
.
Deploy the ParaSwapUtils
library to a testnet or local blockchain.
Deploy the MaliciousCaller
contract, which will be used to demonstrate the bug.
Call the exploitZeroAddressBug
function in the MaliciousCaller
contract, passing the address of the deployed ParaSwapUtils
library.
The transaction will revert with an error like "SafeERC20: approve from non-zero to non-zero allowance"
because the safeApprove
function is called with fromToken = address(0)
.
The transaction will fail because safeApprove
is called with fromToken = address(0)
, which is not a valid ERC20 token address.
The error message will not explicitly indicate that the issue is due to a zero address, making it difficult for users to diagnose the problem.
fromToken
is address(0)
, the safeApprove
call will revert, causing the entire transaction to fail.
The error message will not explicitly indicate that the issue is due to a zero address, making it difficult for users to diagnose the problem.
If the callData
is malformed or manipulated, the function could inadvertently attempt to interact with the zero address, resulting in unintended behavior.
Manual Code Review
add a check to ensure fromToken
is not the zero address
Please read the CodeHawks documentation to know which submissions are valid. If you disagree, provide a coded PoC and explain the real likelihood and the detailed impact on the mainnet without any supposition (if, it could, etc) to prove your point.
Please read the CodeHawks documentation to know which submissions are valid. If you disagree, provide a coded PoC and explain the real likelihood and the detailed impact on the mainnet without any supposition (if, it could, etc) to prove your point. Keepers are added by the admin, there is no "malicious keeper" and if there is a problem in those keepers, that's out of scope. ReadMe and known issues states: " * System relies heavily on keeper for executing trades * Single keeper point of failure if not properly distributed * Malicious keeper could potentially front-run or delay transactions * Assume that Keeper will always have enough gas to execute transactions. There is a pay execution fee function, but the assumption should be that there's more than enough gas to cover transaction failures, retries, etc * There are two spot swap functionalies: (1) using GMX swap and (2) using Paraswap. We can assume that any swap failure will be retried until success. " " * Heavy dependency on GMX protocol functioning correctly * Owner can update GMX-related addresses * Changes in GMX protocol could impact system operations * We can assume that the GMX keeper won't misbehave, delay, or go offline. " "Issues related to GMX Keepers being DOS'd or losing functionality would be considered invalid."
There is no real proof, concrete root cause, specific impact, or enough details in those submissions. Examples include: "It could happen" without specifying when, "If this impossible case happens," "Unexpected behavior," etc. Make a Proof of Concept (PoC) using external functions and realistic parameters. Do not test only the internal function where you think you found something.
Please read the CodeHawks documentation to know which submissions are valid. If you disagree, provide a coded PoC and explain the real likelihood and the detailed impact on the mainnet without any supposition (if, it could, etc) to prove your point.
Please read the CodeHawks documentation to know which submissions are valid. If you disagree, provide a coded PoC and explain the real likelihood and the detailed impact on the mainnet without any supposition (if, it could, etc) to prove your point.
Please read the CodeHawks documentation to know which submissions are valid. If you disagree, provide a coded PoC and explain the real likelihood and the detailed impact on the mainnet without any supposition (if, it could, etc) to prove your point. Keepers are added by the admin, there is no "malicious keeper" and if there is a problem in those keepers, that's out of scope. ReadMe and known issues states: " * System relies heavily on keeper for executing trades * Single keeper point of failure if not properly distributed * Malicious keeper could potentially front-run or delay transactions * Assume that Keeper will always have enough gas to execute transactions. There is a pay execution fee function, but the assumption should be that there's more than enough gas to cover transaction failures, retries, etc * There are two spot swap functionalies: (1) using GMX swap and (2) using Paraswap. We can assume that any swap failure will be retried until success. " " * Heavy dependency on GMX protocol functioning correctly * Owner can update GMX-related addresses * Changes in GMX protocol could impact system operations * We can assume that the GMX keeper won't misbehave, delay, or go offline. " "Issues related to GMX Keepers being DOS'd or losing functionality would be considered invalid."
There is no real proof, concrete root cause, specific impact, or enough details in those submissions. Examples include: "It could happen" without specifying when, "If this impossible case happens," "Unexpected behavior," etc. Make a Proof of Concept (PoC) using external functions and realistic parameters. Do not test only the internal function where you think you found something.
Please read the CodeHawks documentation to know which submissions are valid. If you disagree, provide a coded PoC and explain the real likelihood and the detailed impact on the mainnet without any supposition (if, it could, etc) to prove your point.
The contest is live. Earn rewards by submitting a finding.
This is your time to appeal against judgements on your submissions.
Appeals are being carefully reviewed by our judges.