The PuppyRaffle::getActivePlayerIndex function uses a linear search (O(n) complexity) to find a player's index in the array. This becomes increasingly expensive as more players join the raffle. While view functions don't cost gas when called externally, users must call this function to get their index before calling refund(), resulting in poor user experience and unnecessary complexity.
The Problem:
Players must call getActivePlayerIndex() off-chain to get their index
Then call refund(index) in a separate transaction
With 1,000 players, finding index requires checking up to 1,000 slots
Poor UX: two-step process for a simple refund
Gas inefficient: unnecessary external call pattern
Likelihood: High - Every player who wants a refund must use this pattern.
Impact: Low - Increases gas costs for users and complexity, but doesn't break functionality or cause fund loss.
Gas Cost Analysis:
User Experience Issue:
Alternative Issue - Index Can Return Wrong Value:
The function returns 0 for non-existent players, but 0 is also a valid index for the first player:
Manual review
Use a mapping to track player indices in O(1) constant time:
Even Better - Remove Index Parameter:
Benefits:
✅ O(1) lookup instead of O(n)
✅ Better UX: single transaction for refund
✅ No need for external index lookup
✅ Eliminates stale index issues
✅ Gas savings for users
Note: This is a quality-of-life improvement. While it doesn't fix critical vulnerabilities, it significantly improves user experience and gas efficiency.
## Description `enterRaffle` function uses gas inefficient duplicate check that causes leads to Denial of Service, making subsequent participants to spend much more gas than previous users to enter. ## Vulnerability Details In the `enterRaffle` function, to check duplicates, it loops through the `players` array. As the `player` array grows, it will make more checks, which leads the later user to pay more gas than the earlier one. More users in the Raffle, more checks a user have to make leads to pay more gas. ## Impact As the arrays grows significantly over time, it will make the function unusable due to block gas limit. This is not a fair approach and lead to bad user experience. ## POC In existing test suit, add this test to see the difference b/w gas for users. once added run `forge test --match-test testEnterRaffleIsGasInefficient -vvvvv` in terminal. you will be able to see logs in terminal. ```solidity function testEnterRaffleIsGasInefficient() public { vm.startPrank(owner); vm.txGasPrice(1); /// First we enter 100 participants uint256 firstBatch = 100; address[] memory firstBatchPlayers = new address[](firstBatch); for(uint256 i = 0; i < firstBatchPlayers; i++) { firstBatch[i] = address(i); } uint256 gasStart = gasleft(); puppyRaffle.enterRaffle{value: entranceFee * firstBatch}(firstBatchPlayers); uint256 gasEnd = gasleft(); uint256 gasUsedForFirstBatch = (gasStart - gasEnd) * txPrice; console.log("Gas cost of the first 100 partipants is:", gasUsedForFirstBatch); /// Now we enter 100 more participants uint256 secondBatch = 200; address[] memory secondBatchPlayers = new address[](secondBatch); for(uint256 i = 100; i < secondBatchPlayers; i++) { secondBatch[i] = address(i); } gasStart = gasleft(); puppyRaffle.enterRaffle{value: entranceFee * secondBatch}(secondBatchPlayers); gasEnd = gasleft(); uint256 gasUsedForSecondBatch = (gasStart - gasEnd) * txPrice; console.log("Gas cost of the next 100 participant is:", gasUsedForSecondBatch); vm.stopPrank(owner); } ``` ## Recommendations Here are some of recommendations, any one of that can be used to mitigate this risk. 1. User a mapping to check duplicates. For this approach you to declare a variable `uint256 raffleID`, that way each raffle will have unique id. Add a mapping from player address to raffle id to keep of users for particular round. ```diff + uint256 public raffleID; + mapping (address => uint256) public usersToRaffleId; . . function enterRaffle(address[] memory newPlayers) public payable { require(msg.value == entranceFee * newPlayers.length, "PuppyRaffle: Must send enough to enter raffle"); for (uint256 i = 0; i < newPlayers.length; i++) { players.push(newPlayers[i]); + usersToRaffleId[newPlayers[i]] = true; } // Check for duplicates + for (uint256 i = 0; i < newPlayers.length; i++){ + require(usersToRaffleId[i] != raffleID, "PuppyRaffle: Already a participant"); - for (uint256 i = 0; i < players.length - 1; i++) { - for (uint256 j = i + 1; j < players.length; j++) { - require(players[i] != players[j], "PuppyRaffle: Duplicate player"); - } } emit RaffleEnter(newPlayers); } . . . function selectWinner() external { //Existing code + raffleID = raffleID + 1; } ``` 2. Allow duplicates participants, As technically you can't stop people participants more than once. As players can use new address to enter. ```solidity function enterRaffle(address[] memory newPlayers) public payable { require(msg.value == entranceFee * newPlayers.length, "PuppyRaffle: Must send enough to enter raffle"); for (uint256 i = 0; i < newPlayers.length; i++) { players.push(newPlayers[i]); } emit RaffleEnter(newPlayers); } ```
The contest is live. Earn rewards by submitting a finding.
Submissions are being reviewed by our AI judge. Results will be available in a few minutes.
View all submissionsThe contest is complete and the rewards are being distributed.