Puppy Raffle

AI First Flight #1
Beginner FriendlyFoundrySolidityNFT
EXP
View results
Submission Details
Severity: medium
Valid

DoS Attack via Unbounded Gas Consumption in enterRaffle()

Root + Impact

Description

The enterRaffle() function uses nested loops with O(n²) complexity to check for duplicate players. As the players array grows, the gas cost increases quadratically. With approximately 200+ players, the function will exceed block gas limits, preventing any new players from entering. An attacker can intentionally add many players early to DoS the raffle for legitimate users. The duplicate check iterates through the entire players array for each new player, not just the newly added ones.

function enterRaffle(address[] memory newPlayers) public payable {
require(msg.value == entranceFee * newPlayers.length, "PuppyRaffle: Must send enough to enter raffle");
for (uint256 i = 0; i < newPlayers.length; i++) {
players.push(newPlayers[i]);
}
// Check for duplicates - O(n²) complexity
for (uint256 i = 0; i < players.length - 1; i++) {
for (uint256 j = i + 1; j < players.length; j++) {
require(players[i] != players[j], "PuppyRaffle: Duplicate player");
}
}
emit RaffleEnter(newPlayers);
}

Risk

Impact:
The raffle becomes completely unusable once enough players have entered, preventing legitimate users from participating. An attacker can grief the protocol by entering many addresses early, effectively shutting down the raffle. This also wastes significant gas for users attempting to enter.

Proof of Concept

// Attack contract to DoS the raffle
contract DoSAttack {
function attackRaffle(PuppyRaffle target, uint256 numPlayers) external payable {
address[] memory players = new address[](numPlayers);
for(uint256 i = 0; i < numPlayers; i++) {
players[i] = address(uint160(uint256(keccak256(abi.encodePacked(i)))));
}
target.enterRaffle{value: msg.value}(players);
}
}
// With 100 existing players, adding 1 new player requires ~10,000 iterations
// With 200 players, it requires ~40,000 iterations, likely exceeding gas limits

Recommended Mitigation

mapping(address => bool) public hasEntered;
function enterRaffle(address[] memory newPlayers) public payable {
require(msg.value == entranceFee * newPlayers.length, "PuppyRaffle: Must send enough to enter raffle");
for (uint256 i = 0; i < newPlayers.length; i++) {
require(!hasEntered[newPlayers[i]], "PuppyRaffle: Duplicate player");
hasEntered[newPlayers[i]] = true;
players.push(newPlayers[i]);
}
emit RaffleEnter(newPlayers);
}
// Reset mapping in selectWinner
function selectWinner() external {
// ... existing code ...
for(uint256 i = 0; i < players.length; i++) {
if(players[i] != address(0)) {
hasEntered[players[i]] = false;
}
}
delete players;
// ...
}
Updates

Lead Judging Commences

ai-first-flight-judge Lead Judge about 1 month ago
Submission Judgement Published
Validated
Assigned finding tags:

[M-01] `PuppyRaffle: enterRaffle` Use of gas extensive duplicate check leads to Denial of Service, making subsequent participants to spend much more gas than prev ones to enter

## Description `enterRaffle` function uses gas inefficient duplicate check that causes leads to Denial of Service, making subsequent participants to spend much more gas than previous users to enter. ## Vulnerability Details In the `enterRaffle` function, to check duplicates, it loops through the `players` array. As the `player` array grows, it will make more checks, which leads the later user to pay more gas than the earlier one. More users in the Raffle, more checks a user have to make leads to pay more gas. ## Impact As the arrays grows significantly over time, it will make the function unusable due to block gas limit. This is not a fair approach and lead to bad user experience. ## POC In existing test suit, add this test to see the difference b/w gas for users. once added run `forge test --match-test testEnterRaffleIsGasInefficient -vvvvv` in terminal. you will be able to see logs in terminal. ```solidity function testEnterRaffleIsGasInefficient() public { vm.startPrank(owner); vm.txGasPrice(1); /// First we enter 100 participants uint256 firstBatch = 100; address[] memory firstBatchPlayers = new address[](firstBatch); for(uint256 i = 0; i < firstBatchPlayers; i++) { firstBatch[i] = address(i); } uint256 gasStart = gasleft(); puppyRaffle.enterRaffle{value: entranceFee * firstBatch}(firstBatchPlayers); uint256 gasEnd = gasleft(); uint256 gasUsedForFirstBatch = (gasStart - gasEnd) * txPrice; console.log("Gas cost of the first 100 partipants is:", gasUsedForFirstBatch); /// Now we enter 100 more participants uint256 secondBatch = 200; address[] memory secondBatchPlayers = new address[](secondBatch); for(uint256 i = 100; i < secondBatchPlayers; i++) { secondBatch[i] = address(i); } gasStart = gasleft(); puppyRaffle.enterRaffle{value: entranceFee * secondBatch}(secondBatchPlayers); gasEnd = gasleft(); uint256 gasUsedForSecondBatch = (gasStart - gasEnd) * txPrice; console.log("Gas cost of the next 100 participant is:", gasUsedForSecondBatch); vm.stopPrank(owner); } ``` ## Recommendations Here are some of recommendations, any one of that can be used to mitigate this risk. 1. User a mapping to check duplicates. For this approach you to declare a variable `uint256 raffleID`, that way each raffle will have unique id. Add a mapping from player address to raffle id to keep of users for particular round. ```diff + uint256 public raffleID; + mapping (address => uint256) public usersToRaffleId; . . function enterRaffle(address[] memory newPlayers) public payable { require(msg.value == entranceFee * newPlayers.length, "PuppyRaffle: Must send enough to enter raffle"); for (uint256 i = 0; i < newPlayers.length; i++) { players.push(newPlayers[i]); + usersToRaffleId[newPlayers[i]] = true; } // Check for duplicates + for (uint256 i = 0; i < newPlayers.length; i++){ + require(usersToRaffleId[i] != raffleID, "PuppyRaffle: Already a participant"); - for (uint256 i = 0; i < players.length - 1; i++) { - for (uint256 j = i + 1; j < players.length; j++) { - require(players[i] != players[j], "PuppyRaffle: Duplicate player"); - } } emit RaffleEnter(newPlayers); } . . . function selectWinner() external { //Existing code + raffleID = raffleID + 1; } ``` 2. Allow duplicates participants, As technically you can't stop people participants more than once. As players can use new address to enter. ```solidity function enterRaffle(address[] memory newPlayers) public payable { require(msg.value == entranceFee * newPlayers.length, "PuppyRaffle: Must send enough to enter raffle"); for (uint256 i = 0; i < newPlayers.length; i++) { players.push(newPlayers[i]); } emit RaffleEnter(newPlayers); } ```

Support

FAQs

Can't find an answer? Chat with us on Discord, Twitter or Linkedin.

Give us feedback!