The getMessageHash() function calculates the message hash using the receiver's current token balance at the time of signing. If the receiver's balance changes between signing and claiming (due to transfers, rewards, or any other token movement), the signature becomes invalid.
In the claimSnowman() function, the same dynamic balance is used for verification.
Likelihood:
Medium to High depending on ecosystem activity
Common scenarios: receiving additional tokens from other users, staking rewards, trading activity
Time gap between merkle tree generation, user signing, and claim execution increases probability
Impact:
Valid signatures become invalid if token balance changes
Users must re-sign every time their balance changes before claiming
Poor user experience and potential loss of claim opportunity
Creates a race condition between signing and claiming
Add this test to the test file TestSnowmanAirdrop.t.sol to check that signature fails when the amount changes:
Pass the amount as a parameter instead of reading it dynamically:
Update getMessageHash():
# Root + Impact ## Description * Users will approve a specific amount of Snow to the SnowmanAirdrop and also sign a message with their address and that same amount, in order to be able to claim the NFT * Because the current amount of Snow owned by the user is used in the verification, an attacker could forcefully send Snow to the receiver in a front-running attack, to prevent the receiver from claiming the NFT.  ```Solidity function getMessageHash(address receiver) public view returns (bytes32) { ... // @audit HIGH An attacker could send 1 wei of Snow token to the receiver and invalidate the signature, causing the receiver to never be able to claim their Snowman uint256 amount = i_snow.balanceOf(receiver); return _hashTypedDataV4( keccak256(abi.encode(MESSAGE_TYPEHASH, SnowmanClaim({receiver: receiver, amount: amount}))) ); ``` ## Risk **Likelihood**: * The attacker must purchase Snow and forcefully send it to the receiver in a front-running attack, so the likelihood is Medium **Impact**: * The impact is High as it could lock out the receiver from claiming forever ## Proof of Concept The attack consists on Bob sending an extra Snow token to Alice before Satoshi claims the NFT on behalf of Alice. To showcase the risk, the extra Snow is earned for free by Bob. ```Solidity function testDoSClaimSnowman() public { assert(snow.balanceOf(alice) == 1); // Get alice's digest while the amount is still 1 bytes32 alDigest = airdrop.getMessageHash(alice); // alice signs a message (uint8 alV, bytes32 alR, bytes32 alS) = vm.sign(alKey, alDigest); vm.startPrank(bob); vm.warp(block.timestamp + 1 weeks); snow.earnSnow(); assert(snow.balanceOf(bob) == 2); snow.transfer(alice, 1); // Alice claim test assert(snow.balanceOf(alice) == 2); vm.startPrank(alice); snow.approve(address(airdrop), 1); // satoshi calls claims on behalf of alice using her signed message vm.startPrank(satoshi); vm.expectRevert(); airdrop.claimSnowman(alice, AL_PROOF, alV, alR, alS); } ``` ## Recommended Mitigation Include the amount to be claimed in both `getMessageHash` and `claimSnowman` instead of reading it from the Snow contract. Showing only the new code in the section below ```Python function claimSnowman(address receiver, uint256 amount, bytes32[] calldata merkleProof, uint8 v, bytes32 r, bytes32 s) external nonReentrant { ... bytes32 leaf = keccak256(bytes.concat(keccak256(abi.encode(receiver, amount)))); if (!MerkleProof.verify(merkleProof, i_merkleRoot, leaf)) { revert SA__InvalidProof(); } // @audit LOW Seems like using the ERC20 permit here would allow for both the delegation of the claim and the transfer of the Snow tokens in one transaction i_snow.safeTransferFrom(receiver, address(this), amount); // send ... } ```
The contest is live. Earn rewards by submitting a finding.
Submissions are being reviewed by our AI judge. Results will be available in a few minutes.
View all submissionsThe contest is complete and the rewards are being distributed.