Describe the normal behavior in one or more sentences
The `earnSnow()` function uses a single global timer (`s_earnTimer`) for all users instead of per-user timers. This allows any user who earns Snow to reset the timer, preventing all other users from earning free Snow for another week.
Explain the specific issue or problem in one or more sentences
The contract maintains only one global `s_earnTimer` variable that gets updated whenever any user calls `earnSnow()`. This means the timer is shared across all users, not individual to each user.
Likelihood:
* The first user to call `earnSnow()` sets the timer
* Any subsequent user who earns Snow resets the timer for everyone
* Malicious users can intentionally reset the timer right before the week expires to grief others
* This occurs on every `earnSnow()` call, not just edge cases
Impact:
* Users cannot reliably earn their weekly free Snow token
* Malicious actors can grief the system by resetting the timer
* Unfair distribution of free tokens
* Degraded user experience and potential loss of trust
## Description: The `Snow::buySnow` function contains a critical flaw where it resets a global timer `(s_earnTimer)` to the current block timestamp on every invocation. This timer controls eligibility for free token claims via `Snow::earnSnow()`, which requires 1 week to pass since the last timer reset. As a result: Any token purchase `(via buySnow)` blocks all free claims for all users for 7 days Malicious actors can permanently suppress free claims with micro-transactions Contradicts protocol documentation promising **"free weekly claims per user"** ## Impact: * **Complete Denial-of-Service:** Free claim mechanism becomes unusable * **Broken Protocol Incentives:** Undermines core user acquisition strategy * **Economic Damage:** Eliminates promised free distribution channel * **Reputation Harm:** Users perceive protocol as dishonest ```solidity function buySnow(uint256 amount) external payable canFarmSnow { if (msg.value == (s_buyFee * amount)) { _mint(msg.sender, amount); } else { i_weth.safeTransferFrom(msg.sender, address(this), (s_buyFee * amount)); _mint(msg.sender, amount); } @> s_earnTimer = block.timestamp; emit SnowBought(msg.sender, amount); } ``` ## Risk **Likelihood**: • Triggered by normal protocol usage (any purchase) • Requires only one transaction every 7 days to maintain blockage • Incentivized attack (low-cost disruption) **Impact**: • Permanent suppression of core protocol feature • Loss of user trust and adoption • Violates documented tokenomics ## Proof of Concept **Attack Scenario:** Permanent Free Claim Suppression * Attacker calls **buySnow(1)** with minimum payment * **s\_earnTimer** sets to current timestamp (T0) * All **earnSnow()** calls revert for **next 7 days** * On day 6, attacker repeats **buySnow(1)** * New timer reset (T1 = T0+6 days) * Free claims blocked until **T1+7 days (total 13 days)** * Repeat step **4 every 6 days → permanent blockage** **Test Case:** ```solidity // Day 0: Deploy contract snow = new Snow(...); // s_earnTimer = 0 // UserA claims successfully snow.earnSnow(); // Success (first claim always allowed) // Day 1: UserB buys 1 token snow.buySnow(1); // Resets global timer to day 1 // Day 2: UserA attempts claim snow.earnSnow(); // Reverts! Requires day 1+7 = day 8 // Day 7: UserC buys 1 token (day 7 < day 1+7) snow.buySnow(1); // Resets timer to day 7 // Day 8: UserA retries snow.earnSnow(); // Still reverts! Now requires day 7+7 = day 14 ``` ## Recommended Mitigation **Step 1:** Remove Global Timer Reset from `buySnow` ```diff function buySnow(uint256 amount) external payable canFarmSnow { // ... existing payment logic ... - s_earnTimer = block.timestamp; emit SnowBought(msg.sender, amount); } ``` **Step 2:** Implement Per-User Timer in `earnSnow` ```solidity // Add new state variable mapping(address => uint256) private s_lastClaimTime; function earnSnow() external canFarmSnow { // Check per-user timer instead of global if (s_lastClaimTime[msg.sender] != 0 && block.timestamp < s_lastClaimTime[msg.sender] + 1 weeks ) { revert S__Timer(); } _mint(msg.sender, 1); s_lastClaimTime[msg.sender] = block.timestamp; // Update user-specific timer emit SnowEarned(msg.sender, 1); // Add missing event } ``` **Step 3:** Initialize First Claim (Constructor) ```solidity constructor(...) { // Initialize with current timestamp to prevent immediate claims s_lastClaimTime[address(0)] = block.timestamp; } ```
The contest is live. Earn rewards by submitting a finding.
Submissions are being reviewed by our AI judge. Results will be available in a few minutes.
View all submissionsThe contest is complete and the rewards are being distributed.