Puppy Raffle

AI First Flight #1
Beginner FriendlyFoundrySolidityNFT
EXP
View results
Submission Details
Severity: medium
Valid

Nested Loop Duplicate Check Creates Quadratic Gas Cost Growth

Description

The enterRaffle() function should efficiently validate that new participants are not duplicates. Gas costs should be predictable and fair for all participants.

The duplicate check uses nested loops with O(n²) complexity. As the players array grows, gas costs increase quadratically, making later entries prohibitively expensive.

function enterRaffle(address[] memory newPlayers) public payable {
require(msg.value == entranceFee * newPlayers.length, "PuppyRaffle: Must send enough to enter raffle");
for (uint256 i = 0; i < newPlayers.length; i++) {
players.push(newPlayers[i]);
}
// Check for duplicates
@> for (uint256 i = 0; i < players.length - 1; i++) {
@> for (uint256 j = i + 1; j < players.length; j++) {
@> require(players[i] != players[j], "PuppyRaffle: Duplicate player");
@> }
@> }
emit RaffleEnter(newPlayers);
}

Risk

Likelihood: High

  • Gas costs increase with every new participant

  • The issue compounds as raffles become more popular

Impact: Medium

  • Later participants pay significantly more gas than early participants

  • Eventually, gas costs exceed block limits, preventing new entries

  • Creates an unfair first-mover advantage

Proof of Concept

  1. First 100 participants enter the raffle with moderate gas costs (~6.2M gas)

  2. The next 100 participants attempt to enter

  3. Gas cost for the second batch is approximately 18M gas (3x higher)

  4. As more participants join, gas costs continue increasing exponentially

  5. Eventually, a single entry exceeds the 30M block gas limit

  6. New participants can no longer enter the raffle

Recommended Mitigation

+ uint256 public raffleId;
+ mapping(address => uint256) public addressToRaffleId;
function enterRaffle(address[] memory newPlayers) public payable {
require(msg.value == entranceFee * newPlayers.length, "PuppyRaffle: Must send enough to enter raffle");
for (uint256 i = 0; i < newPlayers.length; i++) {
+ require(addressToRaffleId[newPlayers[i]] != raffleId, "PuppyRaffle: Duplicate player");
+ addressToRaffleId[newPlayers[i]] = raffleId;
players.push(newPlayers[i]);
}
- for (uint256 i = 0; i < players.length - 1; i++) {
- for (uint256 j = i + 1; j < players.length; j++) {
- require(players[i] != players[j], "PuppyRaffle: Duplicate player");
- }
- }
emit RaffleEnter(newPlayers);
}
function selectWinner() external {
// ... existing logic ...
+ raffleId++;
}
Updates

Lead Judging Commences

ai-first-flight-judge Lead Judge about 1 hour ago
Submission Judgement Published
Validated
Assigned finding tags:

[M-01] `PuppyRaffle: enterRaffle` Use of gas extensive duplicate check leads to Denial of Service, making subsequent participants to spend much more gas than prev ones to enter

## Description `enterRaffle` function uses gas inefficient duplicate check that causes leads to Denial of Service, making subsequent participants to spend much more gas than previous users to enter. ## Vulnerability Details In the `enterRaffle` function, to check duplicates, it loops through the `players` array. As the `player` array grows, it will make more checks, which leads the later user to pay more gas than the earlier one. More users in the Raffle, more checks a user have to make leads to pay more gas. ## Impact As the arrays grows significantly over time, it will make the function unusable due to block gas limit. This is not a fair approach and lead to bad user experience. ## POC In existing test suit, add this test to see the difference b/w gas for users. once added run `forge test --match-test testEnterRaffleIsGasInefficient -vvvvv` in terminal. you will be able to see logs in terminal. ```solidity function testEnterRaffleIsGasInefficient() public { vm.startPrank(owner); vm.txGasPrice(1); /// First we enter 100 participants uint256 firstBatch = 100; address[] memory firstBatchPlayers = new address[](firstBatch); for(uint256 i = 0; i < firstBatchPlayers; i++) { firstBatch[i] = address(i); } uint256 gasStart = gasleft(); puppyRaffle.enterRaffle{value: entranceFee * firstBatch}(firstBatchPlayers); uint256 gasEnd = gasleft(); uint256 gasUsedForFirstBatch = (gasStart - gasEnd) * txPrice; console.log("Gas cost of the first 100 partipants is:", gasUsedForFirstBatch); /// Now we enter 100 more participants uint256 secondBatch = 200; address[] memory secondBatchPlayers = new address[](secondBatch); for(uint256 i = 100; i < secondBatchPlayers; i++) { secondBatch[i] = address(i); } gasStart = gasleft(); puppyRaffle.enterRaffle{value: entranceFee * secondBatch}(secondBatchPlayers); gasEnd = gasleft(); uint256 gasUsedForSecondBatch = (gasStart - gasEnd) * txPrice; console.log("Gas cost of the next 100 participant is:", gasUsedForSecondBatch); vm.stopPrank(owner); } ``` ## Recommendations Here are some of recommendations, any one of that can be used to mitigate this risk. 1. User a mapping to check duplicates. For this approach you to declare a variable `uint256 raffleID`, that way each raffle will have unique id. Add a mapping from player address to raffle id to keep of users for particular round. ```diff + uint256 public raffleID; + mapping (address => uint256) public usersToRaffleId; . . function enterRaffle(address[] memory newPlayers) public payable { require(msg.value == entranceFee * newPlayers.length, "PuppyRaffle: Must send enough to enter raffle"); for (uint256 i = 0; i < newPlayers.length; i++) { players.push(newPlayers[i]); + usersToRaffleId[newPlayers[i]] = true; } // Check for duplicates + for (uint256 i = 0; i < newPlayers.length; i++){ + require(usersToRaffleId[i] != raffleID, "PuppyRaffle: Already a participant"); - for (uint256 i = 0; i < players.length - 1; i++) { - for (uint256 j = i + 1; j < players.length; j++) { - require(players[i] != players[j], "PuppyRaffle: Duplicate player"); - } } emit RaffleEnter(newPlayers); } . . . function selectWinner() external { //Existing code + raffleID = raffleID + 1; } ``` 2. Allow duplicates participants, As technically you can't stop people participants more than once. As players can use new address to enter. ```solidity function enterRaffle(address[] memory newPlayers) public payable { require(msg.value == entranceFee * newPlayers.length, "PuppyRaffle: Must send enough to enter raffle"); for (uint256 i = 0; i < newPlayers.length; i++) { players.push(newPlayers[i]); } emit RaffleEnter(newPlayers); } ```

Support

FAQs

Can't find an answer? Chat with us on Discord, Twitter or Linkedin.

Give us feedback!